

CLIMADAM

Development of a Strategy for adaptation to climate change and measures to mitigate its negative consequences for Zakarpatska Oblast Norway

grants

The main purpose

ensuring effective adaptation

of the territory of Zakarpatska Oblast to climate change,

reducing its negative impact on the population,

infrastructure, economy and environment of the region

Key prerequisites

International:

- United Nations Framework Convention on Climate Change (the year 1992)
- Paris Agreement (the year 2015)

European:

- EU Strategy for Adaptation to Climate Change (the year 2021)
- Adaptation strategy to the consequences of climate change in the Košice region (the year 2020)

National:

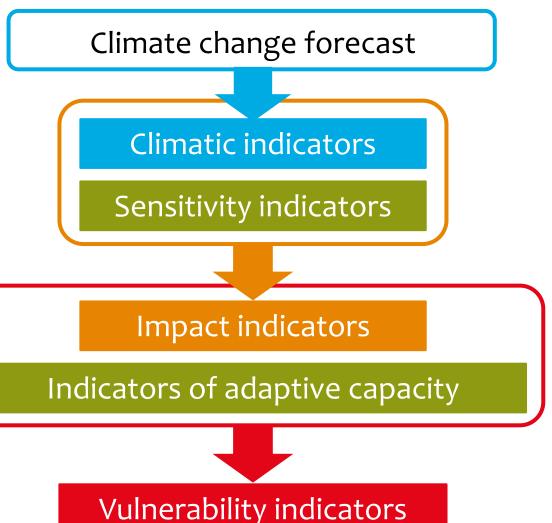
- > Strategy of the State Environmental Policy of Ukraine for the period until 2030 (the year 2019)
- The Concept of Implementation of State Policy in the Field of Climate Change for the period until 2030 (the year 2016)
- Strategy for Environmental Security and Adaptation to Climate Change for the period until 2030 (the year 2021)
- Regional Strategy of Development of Zakarpatska Oblast for the period 2021 2027

Authors team

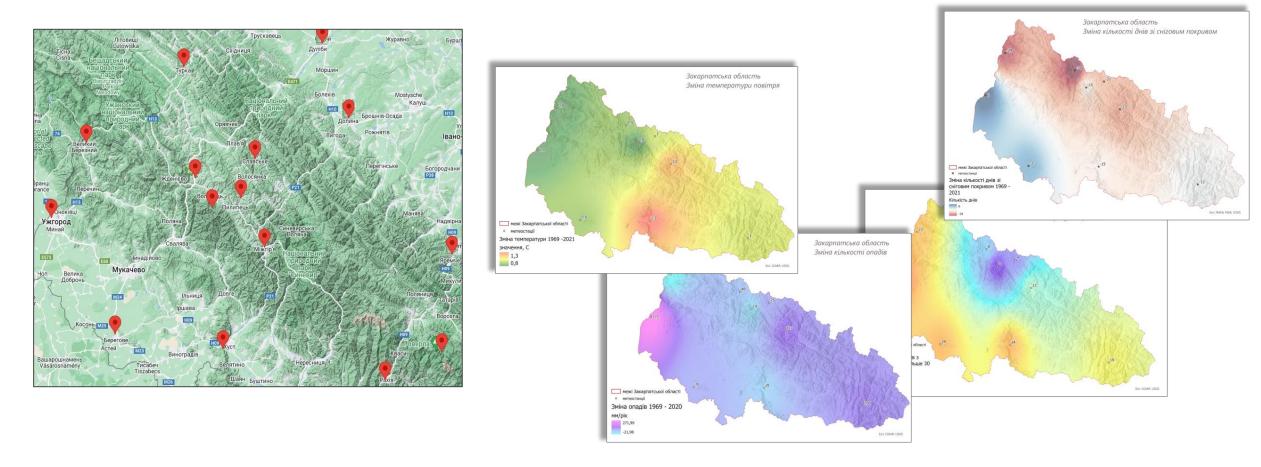
 \checkmark

Agency of geospatial solutions "AGEORA", including experts on:

- climate change
- geomorphology
- ✓ environment assessment
- social geography
- spatial development
- ✓ land resources management
- ✓ GIS technologies
- Zakarpatska Oblast Center for Hydrometeorology
- Ukrainian Hydrometeorological Institute


Methodology of the Strategy for Košický kraj

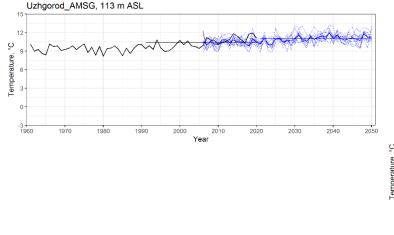
specified taking into account the methodology of the ESPON climate project, as well as the conditions and available data for the territory of Zakarpatska Oblast


Республіки та Агентством регіонального розвитку Кошице, Словаччина №914/2020 та пов'яз

Climate change forecast

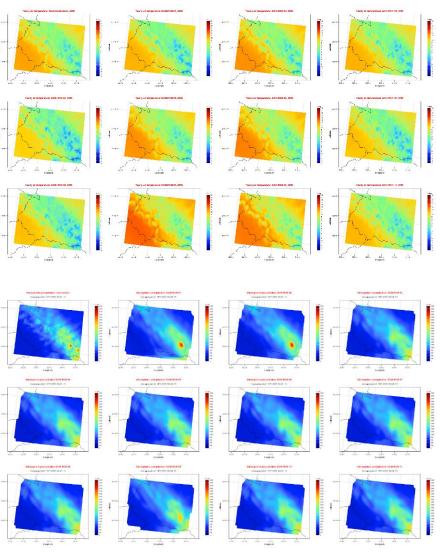
Input data: Data from 9 basic meteorological stations and hydrological posts for the period 1961 – 2022 on the territory of Zakarpatska oblast

Climate change forecast


The work group on **modeling the forecast** of

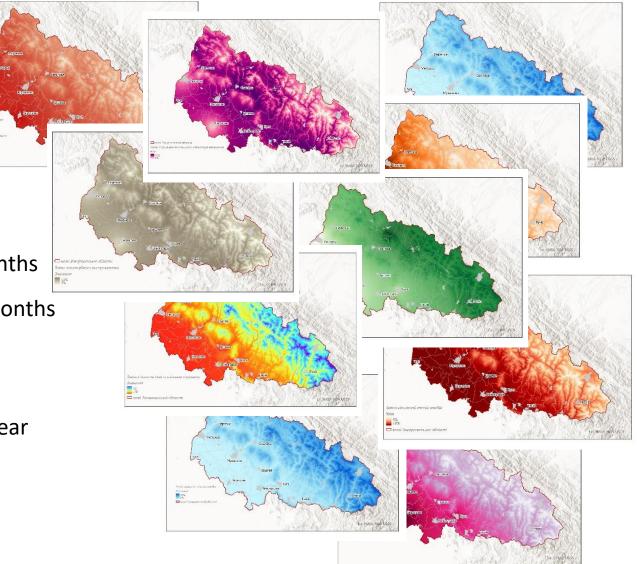
changes in climatic components in


Zakarpatska Oblast until 2050 on the base RPC4.5,


RPC8.5

in cooperation with Ukrainian Hydrometeorological

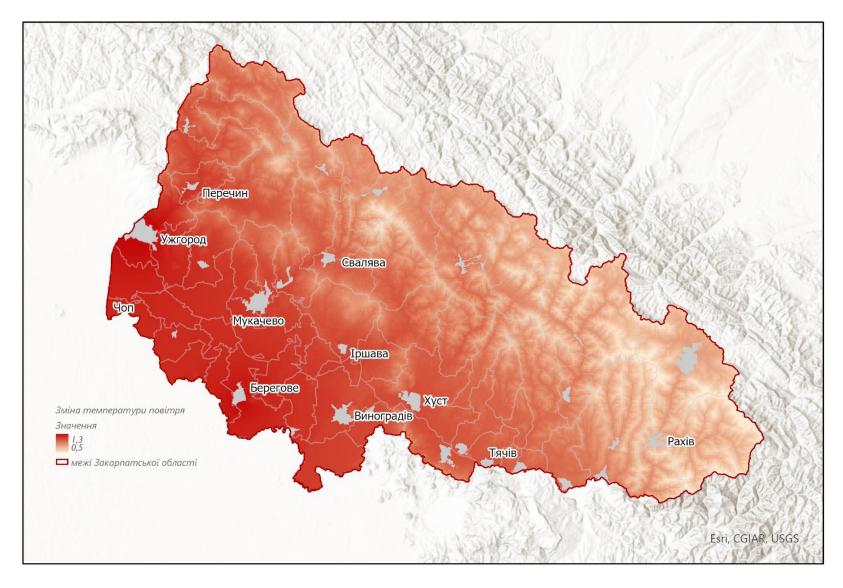
Institute



Climate change forecast

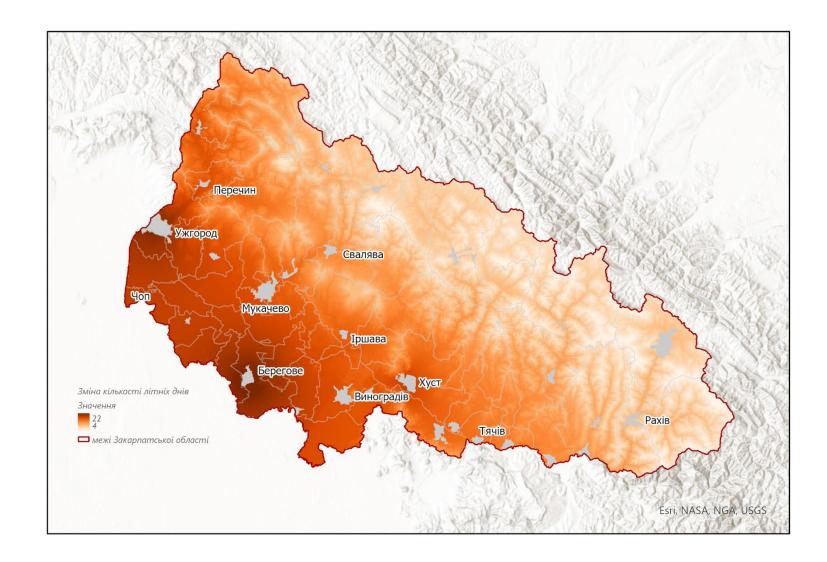
Climatic indicators:

- change in average annual temperature
- change in average annual number of frost days
- change in average annual number of summer days
- change in average annual number of tropical days
- relative change in average precipitation in the winter months
- relative change in average precipitation in the summer months
- change in average number of days with a rainfall of more than 20 mm per year
- change in average number of days with snow cover per year
- relative change in annual potential evapotranspiration
- change in the climatic indicator of drought

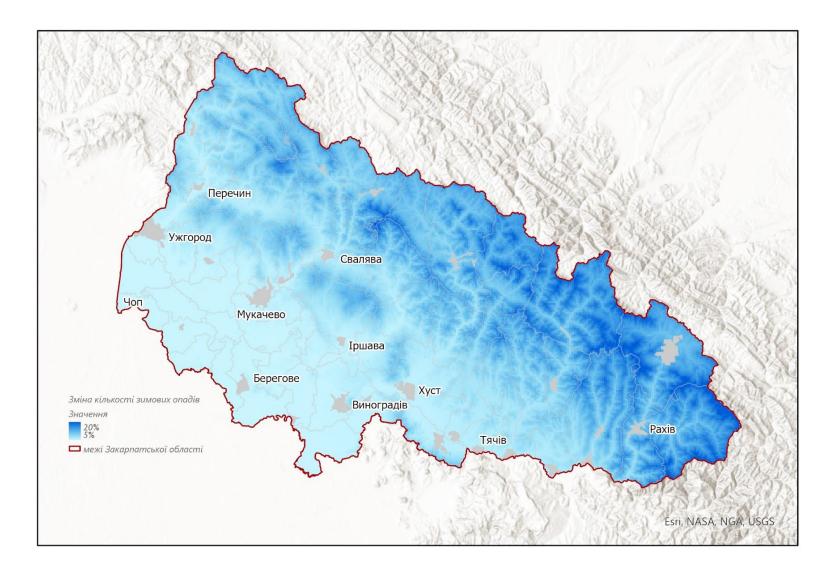


Method of normalization (indicators of exposition)

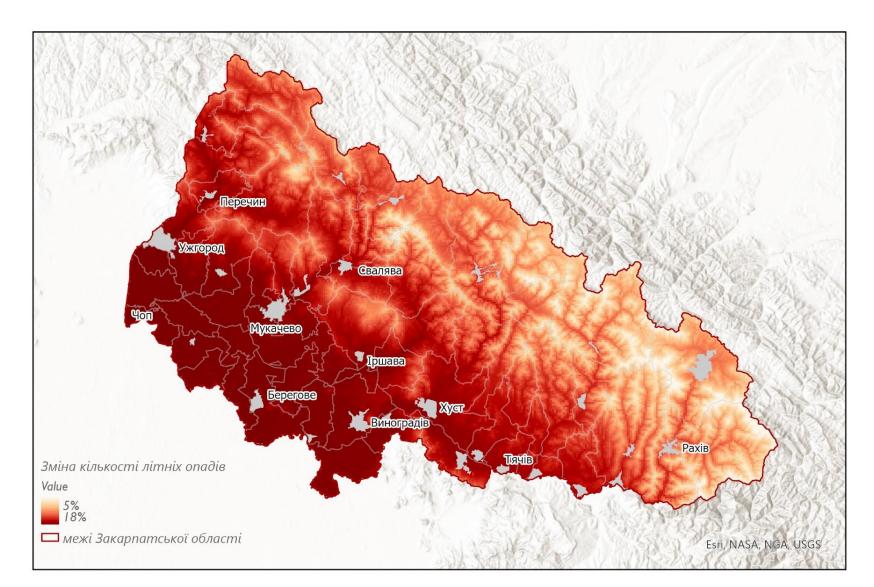
	Normalisation	positive									negative
#	Indicator / normalised value	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
1.1	Change in annual temperature			increase by 1,15		increase by 1,2		increase by 1,25			
1.2	Change in annual number of frost days				decrease by 12 dní		decrease by 13 dní		decrease by 14 dní		
1.3	Change in annual number of summer days	increase by 8			increase by 11-12	increase by 13-14		increase by 15-16	incre by 1		increase by 19 - 20
	Change in annual number of tropical days	increase by 4			increase by 5-6			increase by 7-8			increase by 9-10
1.4	Relative change in precipitation in the winter months	increase by 6-8%			increase by 9-10%			increase by 11-12%			increase by 13-14
1.5	Relative change in precipitation in the summer months	increase dby 5%			decrease by 1-5%			decrease by 6-10%			decrease 11-15%
1.6	Change in number of days with a rainfall of more than 20 mm per year	increase by 0-5%		increase by 5-10%	increase by 10-15%		increase by 15-20%	increase by 20-25%		increase by 25-30%	
1.7	Change in number of days with snow cover per year	increase by 0-5%			decrease by 1-5%			decrease by 6-10%			decrease by 11-15%
1.8	Relative change in annual potential evapotranspiration		increase by 4-6%		increase by 6-8%		increase by 8-10%		increase by 10-12%		increase nad 12%
1.9	Change in the climatic indicator of drought	increase by 10%			increase 11-15%			increase 16-20%			increase 20-25%
1.10	Annual maximums of one-day rainfall totals likely to repeat 1 time in 100 years	0-60	60-80		80-90	90-100	100-120		120-140		140-x



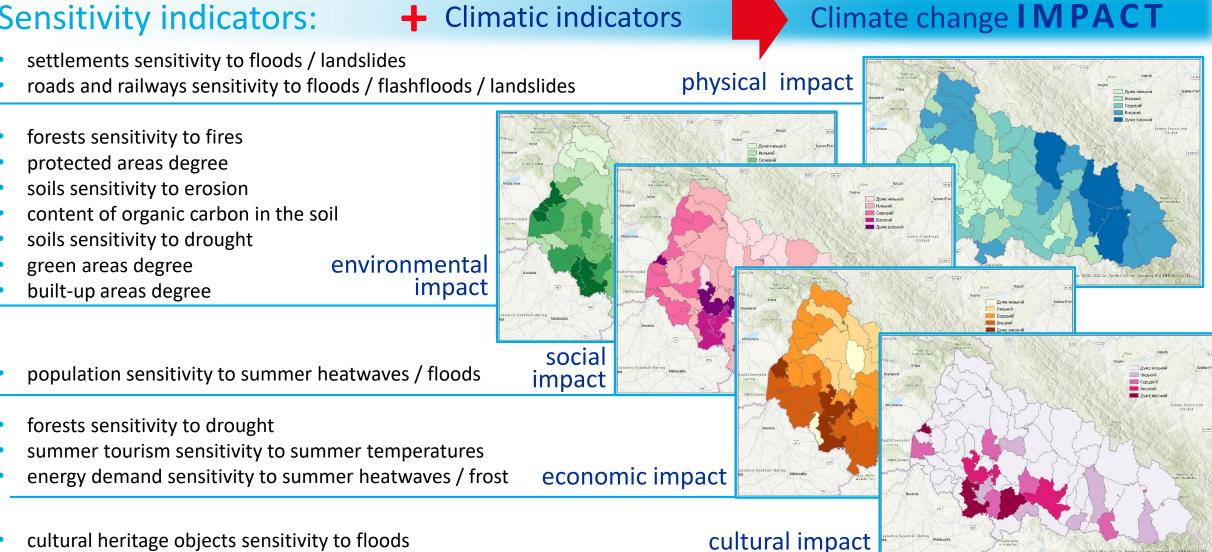
Change in average air temperature 1991-2020 - 2021-2050



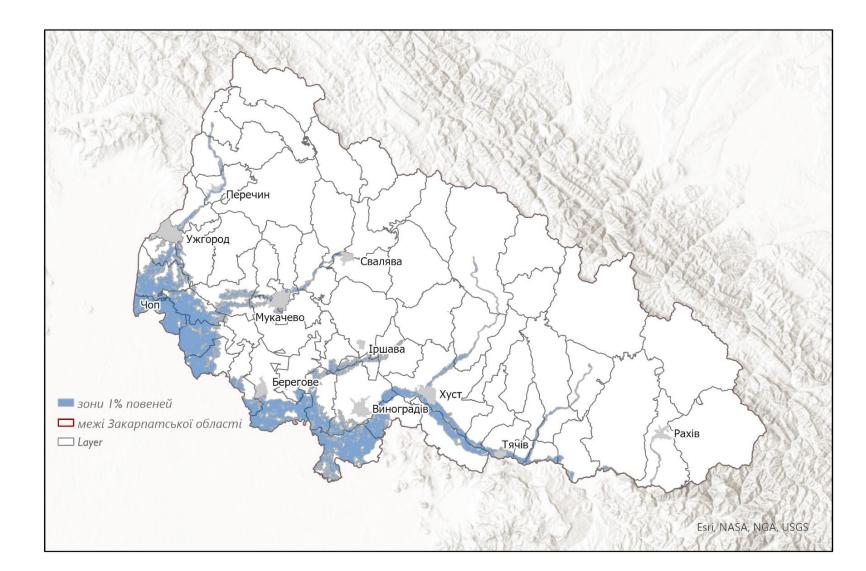
Change in average annual number of summer days 1991-2020 - 2021-2050



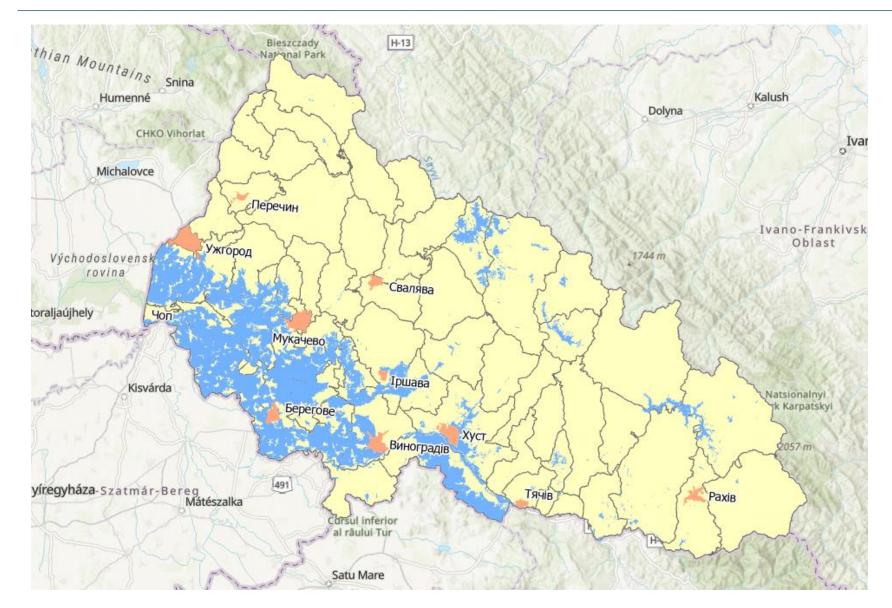
Relative change in average precipitation in the winter months 1991-2020 - 2021-2050


Relative change in average precipitation in the summer months 1991-2020 - 2021-2050

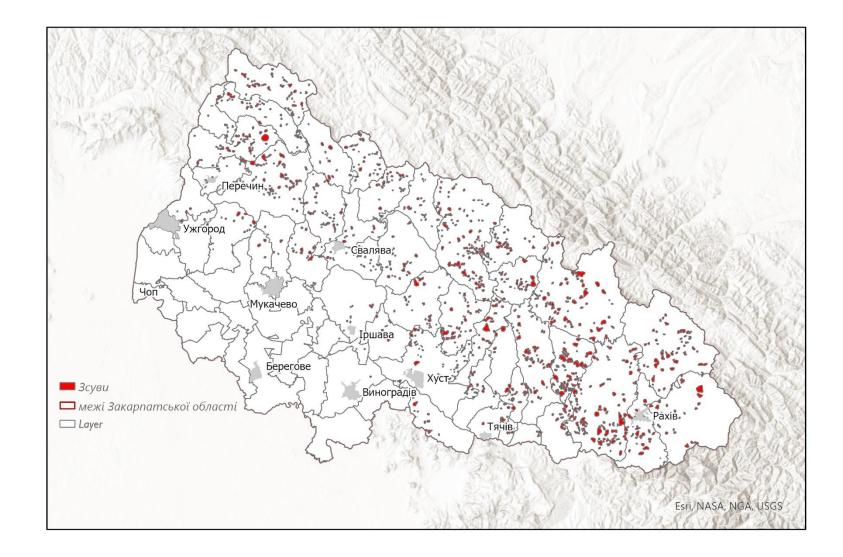
Climate change impact assessment


Sensitivity indicators:

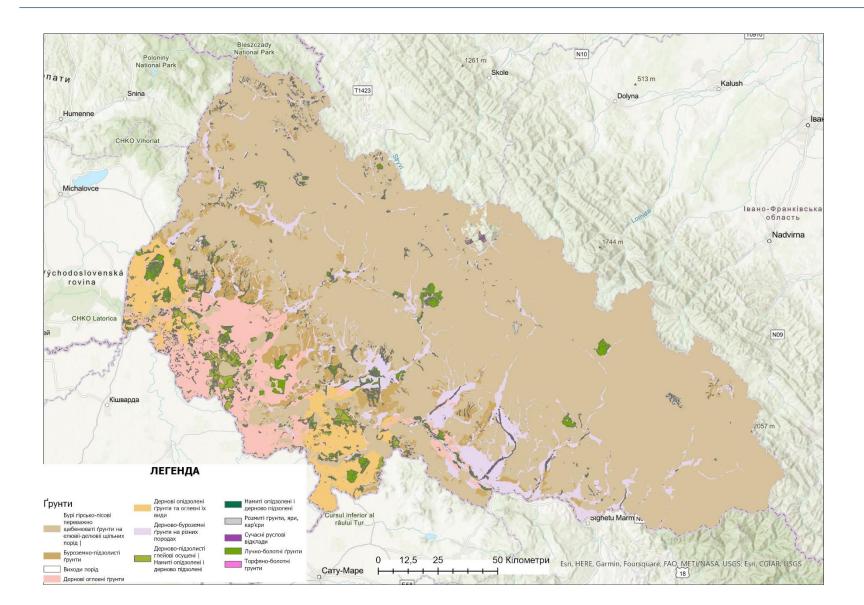
cultural heritage objects sensitivity to floods



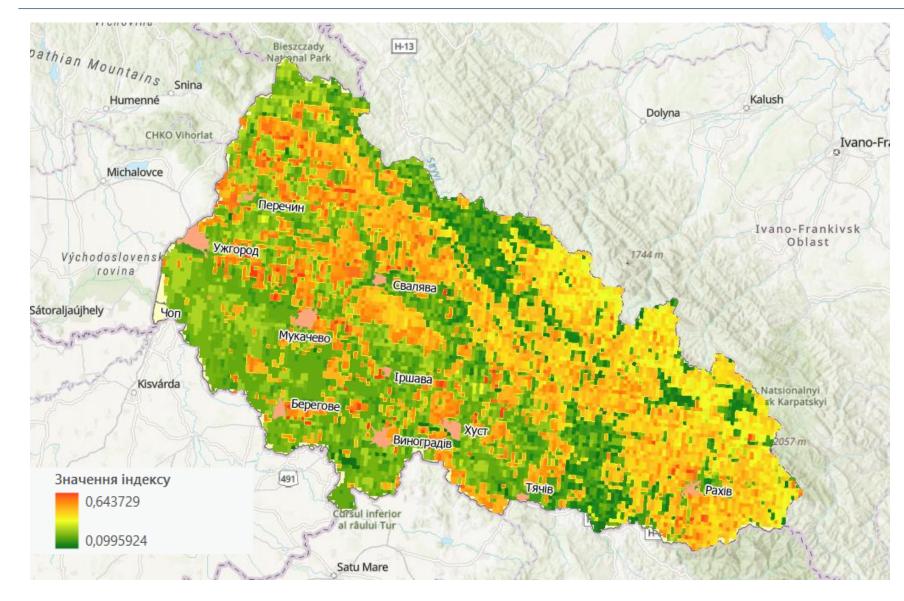
Negative natural phenomena, 1% flood



Negative natural phenomena, flash floods



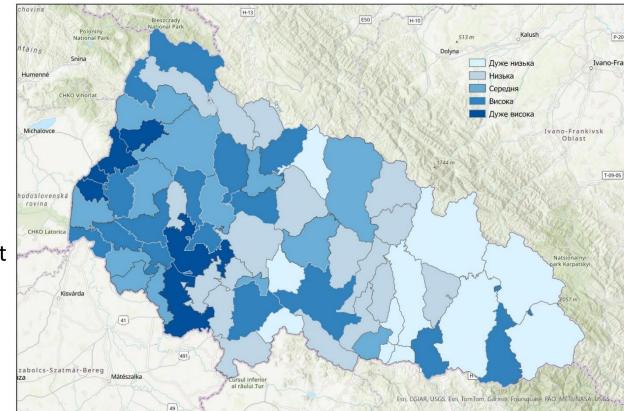
Negative natural phenomena, landslides



Soil properties

Forest fire danger

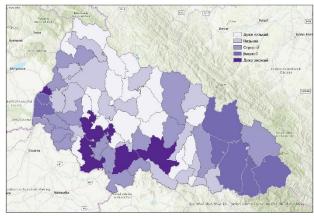
Method of normalization


sensitivity indicators / normalised value	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Physical sensitivity	positive										negative
villages sensitive to floods	0	0 to 15 %			15 to 30 %			30 to 50%			50+%
roads and railways sensitive to floods	0	0 to 15 %			15 to 30 %			30 to 50%			50+%
other strategic objects sensitive to floods		no object			1 object			2 objects			more objects
villages sensitive to flash floods		0-5	05-15		15-25			25-35		35+	
roads and railways sensitive to landslides	0	0 to 15 %			15 to 30 %			30 to 50%			50+%
villages sensitive to landslides	0	0 to 15 %			15 to 30 %			30 to 50%			50+%
Environmental sensitivity											
Forests sensitive to fire		low degree of treatment				medium degree of treatment					high degree of treatment
Protected natural areas		50+%				25-50 %			10-25%	0,1-10%	0
Soil erosion sensitive areas		no			medium			strong			extreme
Soil organic compound		more than 90		80-90		70-80		60-70		less than 60	
Drought-sensitive soils		not threated					threated				highly threated
Ecological stability			0,8-1		0,6-0,8		0,4-0,6		0,2-0,4		0-0,2
Share of built-up areas		0 - 5		5 - 10		10 - 15		15 - 20		20 - x	
Social sensitivity											
Population sensitive to summer heatwaves		0 to 15		15 to 20		20 to 25		25 to 30		30 to x	
Population sensitive to floods	0	1 to 300	300 to 600	600 to 900	900 to 1200	1200 to 1500	1500 to 1800	1800 to 2100	2100 to 2400	2400 to 2700	2700 to x
Population sensitive to flesh floods											
Economic sensitivity											
Forests sensitive to water insufficiency		low sensitivity				medium					high sensitivity
Tourism sensitive to summer temperatures	existing										not existing
Winter tourism sensitive to snow cover	not existing										existing
Heat-sensitive energy demand		0 to 200	200 to 300	300 to 400	400 to 500	500 to 600	600 to 800	800 to 1000	1000 to 1500	1500 to 3000	3 000+
Power plants and other industries sensitive to availability of the water in rivers	not existing										existing

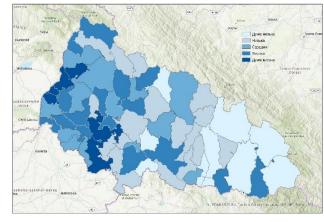
Adaptive capacity assessment

Indicators of adaptive capacity:

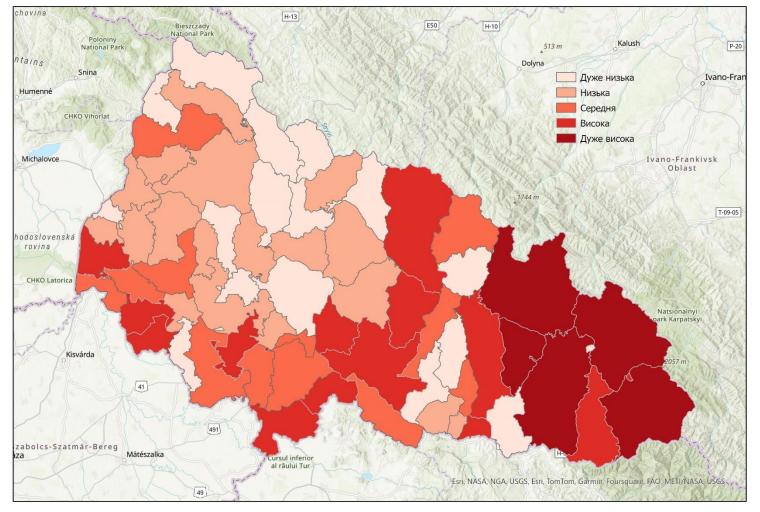
- the specific weight of spending on development measures in local budgets
- percentage of financed costs for development measures in local budgets
- capacity (surplus) of local budgets
- share of the population with higher education
- the number of places in tourist facilities
- population sensitive to summer heat
- connection to the public water supply
- connection to sewerage with wastewater treatment plant
- high-speed Internet access
- civic participation
- providing services to the population
- age dependency
- transport accessibility


Method of normalization

Indicators of adaptive capacity	positive					negative
normalised value	0	0,1	0,235	0,55	0,775	1
Highest educational attainment		>20%	15 to 20%	10 to 15%	5 to 10%	<5%
Accessibility to the regional centre		0 to 15 min.	15 to 30 min.	30 to 45 min.	45 to 60 min.	>60 min.
Connection to the public water supply	available					not available
Connection to sewerage with wastewater treatment plant	yes					no
Management of local governments		5,5 to 6	5 to 5,5	4,5 to 5	4 to 4,5	<4
Civic participation		>70%	60 to 70	50 to 60	40 to 50	<40%
normalised value	0,1	0,28	0,46	0,64	0,82	1
Age dependency	>40%	35 to 40	30 to 35	25 to 30	20 to 25	<20%



Vulnerability assessment

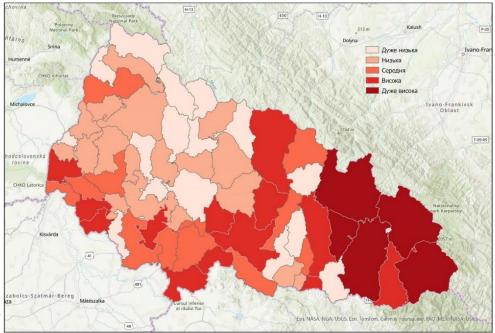

Total impact

Adaptive capacity

Vulnerability to climate change

Spatial patterns

Territorial communities with the highest level of vulnerability


- protection of the territory from the development of hazardous natural processes such as landslides, erosion, mudslides, avalanches
- improving transport accessibility
- optimization of forestry
- diversification of the tourism industry
- provision of water supply to the population

Territorial communities with the medium level of vulnerability

- protection of the territory from flooding and revitalization of river floodplains
- optimization of agriculture and the structure of agricultural lands
- adaptation of urban spaces to climate change
- protection of the population from exposure to high temperatures

Territorial communities with the low level of vulnerability

- > protection of the territory from the development of hazardous natural processes, first of all landslides and erosion
- optimization of forestry
- diversification of the tourism industry

Strategic goal 1: Strengthening organizational and information support for adaptation to climate change

Task 1.1: Establishing a coordinated management system for adaptation to climate change

Task 1.2: Information provision of climate change adaptation measures

Task 1.3: Implementation of innovative solutions for adaptation to climate change

Strategic goal 2: Preservation of the sustainable state of natural landscapes

Task 2.1: Protection of biodiversity of the region

Task 2.2: Ensuring the spatial connectivity of natural landscapes of Zakarpatska Oblast

Strategic goal 3: Prevention of negative consequences of extreme processes in the environment

Task 3.1: Water retention in the landscape taking into account the ecosystem approach

Task 3.2: Revitalization of riverbeds and floodplains in the region

Task 3.3: Development of infrastructure for engineering protection of the territory in areas where ecosystem solutions are not effective or cannot be implemented

Strategic goal 4. Reducing the vulnerability of the population to climate change

Task 4.1: Operational protection of the population against emergency situations

Task 4.2: Formation of the population's ability to adapt

Strategic goal 5. Support of a favorable environment in settlements

Task 5.1: Planning of settlement territories resistant to climate change

Task 5.2: Reduction of the share of artificial coverings in the area of populated areas

Task 5.3: Adaptation of buildings to climate change

Task 5.4: Ensuring sustainable water supply and sewage disposal

Strategic goal 6: Formation of an economic complex resistant to climate change

- Task 6.1: Diversification of the economic complex of the region
- Task 6.2: Ensuring sustainable forestry
- Task 6.3: Protection of agriculture from the negative effects of climate change
- Task 6.4: Supporting and increasing the competitiveness of tourism
- Task 6.5: Ensuring the sustainability of the energy system in the region
- Task 6.6: Introduction of mechanisms to stimulate the implementation by local businesses the climate change adaptation measures

Implementation and monitoring

Organizational support, monitoring, coordination of stakeholders:

> Department on Spatial/Urban Planning and Architecture of Zakarpatska Oblast State Administration

Coordinated involvement of:

- structural subdivisions of Zakarpatska Oblast State Administration
- local authorities
- scientific and educational institutions
- civil organizations
- local business

Financing:

- Oblast budget
- local budgets
- state subventions
- funds of international technical and/or financial assistance and other sources not prohibited by law

Monitoring: annually / data from all stakeholders / report before March, 1 > next activities into the budget

Analysis of the dynamics of changes in climatic indicators: 1 per 5 years > changes into the Strategy

Agency of geospatial solutions "AGEORA"

ageora.org.ua ageoragis@gmail.com www.facebook.com/AgeoraGIS +38(066) 692-53-99 John McCain Str., 16, office 4, Kyiv, 01042, Ukraine